Wat is de kans?

Daan van Eijk Beeld Maartje Geels

Daan van Eijk en Jan Beuving vormden samen het (wetenschaps)cabaretduo Jan & Daan. Jan is wiskundige en theatermaker. Daan is natuurkundige aan de University of Wisconsin in Madison, VS. Om de week stellen zij elkaar hier een vraag.

Dag Jan,

Ik was afgelopen week jarig, waardoor ik moest denken aan het verjaardagsprobleem. Dat wiskundige probleem draait om de volgende vraag: wat is de kans dat in een groep mensen twee mensen op dezelfde dag jarig zijn? Het is een klassieke vraag uit de kansrekening, vooral omdat het antwoord nogal tegen-intuïtief is. De uitkomst is namelijk dat bij een groep van 23 personen de kans dat twee mensen op dezelfde dag jarig zijn al groter is dan 50 procent. Bizar, toch?

Er is een ander bekend kansrekeningsvraagstuk waarbij je intuïtie je in de steek laat: het driedeurenprobleem. Stel je voor dat je meedoet aan een quiz waar je een auto kan winnen. Je krijgt de keuze tussen drie deuren. Achter twee van de drie deuren staat een relatief nutteloze geit terwijl achter één van de drie deuren zich de auto bevindt. Je kiest een deur, zeg deur 1. De quizmaster weet natuurlijk wat zich achter elke deur bevindt en in plaats van deur 1 voor je open te maken, maakt hij eerst deur 3 open en laat zien dat zich achter die deur een geit bevindt. Vervolgens vraagt de quizmaster of je je keuze voor deur 1 wilt wijzigen naar deur 2. Wat doe je als je de kans op het winnen van de auto zo groot mogelijk wil maken? Wijzigen naar deur 2 of niet?

Het antwoord blijkt te zijn dat je je keuze inderdaad beter kunt wijzigen en een fantastische manier om dat in te zien is als volgt: stel je voor dat er een miljoen deuren waren geweest in plaats van slechts drie. De quizmaster opent na jouw keuze 999.998 deuren met geiten (wat een kabaal). Naast jouw deur blijft er dan nog één dichte deur over. Switchen of niet? Als het goed is schreeuwt je intuïtie nu JA! De kans is namelijk wel héél klein dat jouw eerste keuze precies de deur met de auto was.

Nou heb ik altijd moeite om de uitkomst van het verjaardagsprobleem simpel uit te leggen. Bestaat daarvoor niet ook een truc of ezelsbrug waardoor ik het intuïtief sneller en beter snap?

Tekst loopt door onder afbeelding

Jan Beuving, Beeld Maartje Geels

Daan!

Van harte gefeliciteerd nog! Maar wat haal je je op de hals? Begin nooit over het driedeurenprobleem in een column! Onze collega Ionica Smeets heeft het eens gedaan in de Volkskrant en de stroom brieven was eindeloos. Ze werd voor gek versleten. Maar Ionica - en de wiskunde - had gelijk, natuurlijk. De variant met een miljoen deuren heeft me overigens nooit overtuigd. Mijn intuïtie blijft EEN HALF schreeuwen, je hebt hem wel of je hebt hem niet (maar met al die geiten hoor je dat toch niet).

Intuïtie is een merkwaardig monster. Volgens mij wordt het in de weg gezeten door egoïsme. Neem nu dat verjaardagenprobleem. Het lijkt inderdaad heel weinig, 23 mensen, om een kans van meer dan 50 procent te hebben op een verjaardag op dezelfde dag. Waarom? Omdat je intuïtie volgens mij denkt: hoe groot is de kans dat iemand op dezelfde dag jarig is als ik? Als je onderdeel bent van een groep van 23 mensen, kun je met 22 anderen een groepje van 2 vormen. 22 kansen dus, denkt je intuïtie, op een verjaardag gelijk met jou. Maar ja, er zijn 365 dagen in een jaar - kleine kans dus.

Maar de vraag is veel minder specifiek: wanneer zijn er twee mensen op dezelfde dag jarig? En daarvoor moet je weten hoeveel verschillende groepjes van 2 je kunt maken uit 23 mensen. En dat zijn er 253. Immers: jij kunt met 22 mensen een groepje maken, de volgende met 21 mensen (de groep met jou zit al in die 22), en zo tellen we door: 22+21+20+...+3+2+1 = 253. En dan roept je intuïtie waarschijnlijk: 365 dagen en 253 verschillende koppels: aardige kans! De tip is dus: kijk naar de goede getallen. Overigens is 23 mensen precies de grootte van een voetbalselectie die naar een groot toernooi mag. Ik ben even in de geschiedenis van de oranjemannen gedoken en ik was verrast dat er in 1998, 2000 én 2004 zelfs twee setjes van twee dezelfde verjaardagen waren!

Maar met reden: Edwin van der Sar en Phillip Cocu zijn op dezelfde dag jarig, en die zaten steeds beiden in de selectie. Bovendien had je in 1998 en 2000 Frank en Ronald de Boer in de groep, en dat is een tweeling. Daar gáát je intuïtie!

Meer over

Wilt u iets delen met Trouw?

Tip hier onze journalisten

Op alle verhalen van Trouw rust uiteraard copyright. Linken kan altijd, eventueel met de intro van het stuk erboven.
Wil je tekst overnemen of een video(fragment), foto of illustratie gebruiken, mail dan naar copyright@trouw.nl.
© 2019 DPG Media B.V. - alle rechten voorbehouden